ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.07415
27
2

Structured Reinforcement Learning for Incentivized Stochastic Covert Optimization

13 May 2024
Adit Jain
Vikram Krishnamurthy
    FedML
ArXivPDFHTML
Abstract

This paper studies how a stochastic gradient algorithm (SG) can be controlled to hide the estimate of the local stationary point from an eavesdropper. Such problems are of significant interest in distributed optimization settings like federated learning and inventory management. A learner queries a stochastic oracle and incentivizes the oracle to obtain noisy gradient measurements and perform SG. The oracle probabilistically returns either a noisy gradient of the function} or a non-informative measurement, depending on the oracle state and incentive. The learner's query and incentive are visible to an eavesdropper who wishes to estimate the stationary point. This paper formulates the problem of the learner performing covert optimization by dynamically incentivizing the stochastic oracle and obfuscating the eavesdropper as a finite-horizon Markov decision process (MDP). Using conditions for interval-dominance on the cost and transition probability structure, we show that the optimal policy for the MDP has a monotone threshold structure. We propose searching for the optimal stationary policy with the threshold structure using a stochastic approximation algorithm and a multi-armed bandit approach. The effectiveness of our methods is numerically demonstrated on a covert federated learning hate-speech classification task.

View on arXiv
Comments on this paper