47
6

DARA: Domain- and Relation-aware Adapters Make Parameter-efficient Tuning for Visual Grounding

Abstract

Visual grounding (VG) is a challenging task to localize an object in an image based on a textual description. Recent surge in the scale of VG models has substantially improved performance, but also introduced a significant burden on computational costs during fine-tuning. In this paper, we explore applying parameter-efficient transfer learning (PETL) to efficiently transfer the pre-trained vision-language knowledge to VG. Specifically, we propose \textbf{DARA}, a novel PETL method comprising \underline{\textbf{D}}omain-aware \underline{\textbf{A}}dapters (DA Adapters) and \underline{\textbf{R}}elation-aware \underline{\textbf{A}}dapters (RA Adapters) for VG. DA Adapters first transfer intra-modality representations to be more fine-grained for the VG domain. Then RA Adapters share weights to bridge the relation between two modalities, improving spatial reasoning. Empirical results on widely-used benchmarks demonstrate that DARA achieves the best accuracy while saving numerous updated parameters compared to the full fine-tuning and other PETL methods. Notably, with only \textbf{2.13\%} tunable backbone parameters, DARA improves average accuracy by \textbf{0.81\%} across the three benchmarks compared to the baseline model. Our code is available at \url{https://github.com/liuting20/DARA}.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.