24
0

Consistent Empirical Bayes estimation of the mean of a mixing distribution without identifiability assumption. With applications to treatment of non-response

Abstract

{\bf Abstract} Consider a Non-Parametric Empirical Bayes (NPEB) setup. We observe Yi,f(yθi)Y_i, \sim f(y|\theta_i), θiΘ\theta_i \in \Theta independent, where θiG\theta_i \sim G are independent i=1,...,ni=1,...,n. The mixing distribution GG is unknown G{G}G \in \{G\} with no parametric assumptions about the class {G}\{G \}. The common NPEB task is to estimate θi,  i=1,...,n\theta_i, \; i=1,...,n. Conditions that imply óptimality' of such NPEB estimators typically require identifiability of GG based on Y1,...,YnY_1,...,Y_n. We consider the task of estimating EGθE_G \theta. We show that `often' consistent estimation of EGθE_G \theta is implied without identifiability. We motivate the later task, especially in setups with non-response and missing data. We demonstrate consistency in simulations.

View on arXiv
Comments on this paper