LIVEJoin the current RTAI Connect sessionJoin now

30
2

A Transformer with Stack Attention

Abstract

Natural languages are believed to be (mildly) context-sensitive. Despite underpinning remarkably capable large language models, transformers are unable to model many context-free language tasks. In an attempt to address this limitation in the modeling power of transformer-based language models, we propose augmenting them with a differentiable, stack-based attention mechanism. Our stack-based attention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model. We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-free languages.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.