53
4

VMambaCC: A Visual State Space Model for Crowd Counting

Abstract

As a deep learning model, Visual Mamba (VMamba) has a low computational complexity and a global receptive field, which has been successful applied to image classification and detection. To extend its applications, we apply VMamba to crowd counting and propose a novel VMambaCC (VMamba Crowd Counting) model. Naturally, VMambaCC inherits the merits of VMamba, or global modeling for images and low computational cost. Additionally, we design a Multi-head High-level Feature (MHF) attention mechanism for VMambaCC. MHF is a new attention mechanism that leverages high-level semantic features to augment low-level semantic features, thereby enhancing spatial feature representation with greater precision. Building upon MHF, we further present a High-level Semantic Supervised Feature Pyramid Network (HS2PFN) that progressively integrates and enhances high-level semantic information with low-level semantic information. Extensive experimental results on five public datasets validate the efficacy of our approach. For example, our method achieves a mean absolute error of 51.87 and a mean squared error of 81.3 on the ShangHaiTech\_PartA dataset. Our code is coming soon.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.