ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.03526
26
3

ReinWiFi: A Reinforcement-Learning-Based Framework for the Application-Layer QoS Optimization of WiFi Networks

6 May 2024
Qianren Li
B. Lv
Yuncong Hong
Rui-cang Wang
ArXivPDFHTML
Abstract

In this paper, a reinforcement-learning-based scheduling framework is proposed and implemented to optimize the application-layer quality-of-service (QoS) of a practical wireless local area network (WLAN) suffering from unknown interference. Particularly, application-layer tasks of file delivery and delay-sensitive communication, e.g., screen projection, in a WLAN with enhanced distributed channel access (EDCA) mechanism, are jointly scheduled by adjusting the contention window sizes and application-layer throughput limitation, such that their QoS, including the throughput of file delivery and the round trip time of the delay-sensitive communication, can be optimized. Due to the unknown interference and vendor-dependent implementation of the network interface card, the relation between the scheduling policy and the system QoS is unknown. Hence, a reinforcement learning method is proposed, in which a novel Q-network is trained to map from the historical scheduling parameters and QoS observations to the current scheduling action. It is demonstrated on a testbed that the proposed framework can achieve a significantly better QoS than the conventional EDCA mechanism.

View on arXiv
Comments on this paper