ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.02801
24
4

Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models

5 May 2024
Tianze Xu
Jiajun Li
Xuesong Chen
Xinrui Yao
Shuchang Liu
ArXivPDFHTML
Abstract

In recent years, AI-Generated Content (AIGC) has witnessed rapid advancements, facilitating the generation of music, images, and other forms of artistic expression across various industries. However, researches on general multi-modal music generation model remain scarce. To fill this gap, we propose a multi-modal music generation framework Mozart's Touch. It could generate aligned music with the cross-modality inputs, such as images, videos and text. Mozart's Touch is composed of three main components: Multi-modal Captioning Module, Large Language Model (LLM) Understanding & Bridging Module, and Music Generation Module. Unlike traditional approaches, Mozart's Touch requires no training or fine-tuning pre-trained models, offering efficiency and transparency through clear, interpretable prompts. We also introduce "LLM-Bridge" method to resolve the heterogeneous representation problems between descriptive texts of different modalities. We conduct a series of objective and subjective evaluations on the proposed model, and results indicate that our model surpasses the performance of current state-of-the-art models. Our codes and examples is availble at: https://github.com/WangTooNaive/MozartsTouch

View on arXiv
Comments on this paper