ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01701
31
2

Active Learning Enabled Low-cost Cell Image Segmentation Using Bounding Box Annotation

2 May 2024
Yu Zhu
Qiang Yang
Li Xu
    VLM
ArXivPDFHTML
Abstract

Cell image segmentation is usually implemented using fully supervised deep learning methods, which heavily rely on extensive annotated training data. Yet, due to the complexity of cell morphology and the requirement for specialized knowledge, pixel-level annotation of cell images has become a highly labor-intensive task. To address the above problems, we propose an active learning framework for cell segmentation using bounding box annotations, which greatly reduces the data annotation cost of cell segmentation algorithms. First, we generate a box-supervised learning method (denoted as YOLO-SAM) by combining the YOLOv8 detector with the Segment Anything Model (SAM), which effectively reduces the complexity of data annotation. Furthermore, it is integrated into an active learning framework that employs the MC DropBlock method to train the segmentation model with fewer box-annotated samples. Extensive experiments demonstrate that our model saves more than ninety percent of data annotation time compared to mask-supervised deep learning methods.

View on arXiv
Comments on this paper