ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.00025
23
2

Leveraging Pre-trained CNNs for Efficient Feature Extraction in Rice Leaf Disease Classification

26 February 2024
Md. Shohanur Islam Sobuj
Md. Imran Hossen
Md. Foysal Mahmud
Mahbub Ul Islam Khan
ArXivPDFHTML
Abstract

Rice disease classification is a critical task in agricultural research, and in this study, we rigorously evaluate the impact of integrating feature extraction methodologies within pre-trained convolutional neural networks (CNNs). Initial investigations into baseline models, devoid of feature extraction, revealed commendable performance with ResNet-50 and ResNet-101 achieving accuracies of 91% and 92%, respectively. Subsequent integration of Histogram of Oriented Gradients (HOG) yielded substantial improvements across architectures, notably propelling the accuracy of EfficientNet-B7 from 92\% to an impressive 97%. Conversely, the application of Local Binary Patterns (LBP) demonstrated more conservative performance enhancements. Moreover, employing Gradient-weighted Class Activation Mapping (Grad-CAM) unveiled that HOG integration resulted in heightened attention to disease-specific features, corroborating the performance enhancements observed. Visual representations further validated HOG's notable influence, showcasing a discernible surge in accuracy across epochs due to focused attention on disease-affected regions. These results underscore the pivotal role of feature extraction, particularly HOG, in refining representations and bolstering classification accuracy. The study's significant highlight was the achievement of 97% accuracy with EfficientNet-B7 employing HOG and Grad-CAM, a noteworthy advancement in optimizing pre-trained CNN-based rice disease identification systems. The findings advocate for the strategic integration of advanced feature extraction techniques with cutting-edge pre-trained CNN architectures, presenting a promising avenue for substantially augmenting the precision and effectiveness of image-based disease classification systems in agricultural contexts.

View on arXiv
Comments on this paper