ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.18949
41
4

The Simpler The Better: An Entropy-Based Importance Metric To Reduce Neural Networks' Depth

27 April 2024
Victor Quétu
Zhu Liao
Enzo Tartaglione
ArXivPDFHTML
Abstract

While deep neural networks are highly effective at solving complex tasks, large pre-trained models are commonly employed even to solve consistently simpler downstream tasks, which do not necessarily require a large model's complexity. Motivated by the awareness of the ever-growing AI environmental impact, we propose an efficiency strategy that leverages prior knowledge transferred by large models. Simple but effective, we propose a method relying on an Entropy-bASed Importance mEtRic (EASIER) to reduce the depth of over-parametrized deep neural networks, which alleviates their computational burden. We assess the effectiveness of our method on traditional image classification setups. Our code is available at https://github.com/VGCQ/EASIER.

View on arXiv
Comments on this paper