46
10

Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models

Jinbo Wen
Ruichen Zhang
Dusit Niyato
Jiawen Kang
Hongyang Du
Yang Zhang
Zhu Han
Abstract

By integrating Artificial Intelligence (AI) with the Internet of Things (IoT), Artificial Intelligence of Things (AIoT) has revolutionized many fields. However, AIoT is facing the challenges of energy consumption and carbon emissions due to the continuous advancement of mobile technology. Fortunately, Generative AI (GAI) holds immense potential to reduce carbon emissions of AIoT due to its excellent reasoning and generation capabilities. In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT. Specifically, we first study the main impacts that cause carbon emissions in AIoT, and then introduce GAI techniques and their relations to carbon emissions. We then explore the application prospects of GAI in low-carbon AIoT, focusing on how GAI can reduce carbon emissions of network components. Subsequently, we propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules to generate more accurate and reliable optimization problems. Furthermore, we utilize Generative Diffusion Models (GDMs) to identify optimal strategies for carbon emission reduction. Numerical results demonstrate the effectiveness of the proposed framework. Finally, we insightfully provide open research directions for low-carbon AIoT.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.