ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.18066
40
0

Quantized Context Based LIF Neurons for Recurrent Spiking Neural Networks in 45nm

28 April 2024
S.S. Bezugam
Yihao Wu
JaeBum Yoo
D. Strukov
Bongjin Kim
ArXivPDFHTML
Abstract

In this study, we propose the first hardware implementation of a context-based recurrent spiking neural network (RSNN) emphasizing on integrating dual information streams within the neocortical pyramidal neurons specifically Context- Dependent Leaky Integrate and Fire (CLIF) neuron models, essential element in RSNN. We present a quantized version of the CLIF neuron (qCLIF), developed through a hardware-software codesign approach utilizing the sparse activity of RSNN. Implemented in a 45nm technology node, the qCLIF is compact (900um^2) and achieves a high accuracy of 90% despite 8 bit quantization on DVS gesture classification dataset. Our analysis spans a network configuration from 10 to 200 qCLIF neurons, supporting up to 82k synapses within a 1.86 mm^2 footprint, demonstrating scalability and efficiency

View on arXiv
Comments on this paper