ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.17617
34
12

Beyond Traditional Threats: A Persistent Backdoor Attack on Federated Learning

26 April 2024
Tao Liu
Yuhang Zhang
Zhu Feng
Zhiqin Yang
Chen Xu
Dapeng Man
Wu Yang
    FedML
    AAML
ArXivPDFHTML
Abstract

Backdoors on federated learning will be diluted by subsequent benign updates. This is reflected in the significant reduction of attack success rate as iterations increase, ultimately failing. We use a new metric to quantify the degree of this weakened backdoor effect, called attack persistence. Given that research to improve this performance has not been widely noted,we propose a Full Combination Backdoor Attack (FCBA) method. It aggregates more combined trigger information for a more complete backdoor pattern in the global model. Trained backdoored global model is more resilient to benign updates, leading to a higher attack success rate on the test set. We test on three datasets and evaluate with two models across various settings. FCBA's persistence outperforms SOTA federated learning backdoor attacks. On GTSRB, postattack 120 rounds, our attack success rate rose over 50% from baseline. The core code of our method is available at https://github.com/PhD-TaoLiu/FCBA.

View on arXiv
Comments on this paper