ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16180
19
7

Blind Federated Learning without initial model

24 April 2024
Jose L. Salmeron
Irina Arévalo
    FedML
ArXivPDFHTML
Abstract

Federated learning is an emerging machine learning approach that allows the construction of a model between several participants who hold their own private data. This method is secure and privacy-preserving, suitable for training a machine learning model using sensitive data from different sources, such as hospitals. In this paper, the authors propose two innovative methodologies for Particle Swarm Optimisation-based federated learning of Fuzzy Cognitive Maps in a privacy-preserving way. In addition, one relevant contribution this research includes is the lack of an initial model in the federated learning process, making it effectively blind. This proposal is tested with several open datasets, improving both accuracy and precision.

View on arXiv
Comments on this paper