ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16155
28
0

Does SAM dream of EIG? Characterizing Interactive Segmenter Performance using Expected Information Gain

24 April 2024
Kuan-I Chung
Daniel Moyer
    VLM
ArXivPDFHTML
Abstract

We introduce an assessment procedure for interactive segmentation models. Based on concepts from Bayesian Experimental Design, the procedure measures a model's understanding of point prompts and their correspondence with the desired segmentation mask. We show that Oracle Dice index measurements are insensitive or even misleading in measuring this property. We demonstrate the use of the proposed procedure on three interactive segmentation models and subsets of two large image segmentation datasets.

View on arXiv
Comments on this paper