ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16072
18
0

Playing Board Games with the Predict Results of Beam Search Algorithm

23 April 2024
Sergey Pastukhov
ArXivPDFHTML
Abstract

This paper introduces a novel algorithm for two-player deterministic games with perfect information, which we call PROBS (Predict Results of Beam Search). Unlike existing methods that predominantly rely on Monte Carlo Tree Search (MCTS) for decision processes, our approach leverages a simpler beam search algorithm. We evaluate the performance of our algorithm across a selection of board games, where it consistently demonstrates an increased winning ratio against baseline opponents. A key result of this study is that the PROBS algorithm operates effectively, even when the beam search size is considerably smaller than the average number of turns in the game.

View on arXiv
Comments on this paper