ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15852
33
8

QOPTLib: a Quantum Computing Oriented Benchmark for Combinatorial Optimization Problems

24 April 2024
E. Osaba
Esther Villar-Rodriguez
ArXivPDFHTML
Abstract

In this paper, we propose a quantum computing oriented benchmark for combinatorial optimization. This benchmark, coined as QOPTLib, is composed of 40 instances equally distributed over four well-known problems: Traveling Salesman Problem, Vehicle Routing Problem, one-dimensional Bin Packing Problem and the Maximum Cut Problem. The sizes of the instances in QOPTLib not only correspond to computationally addressable sizes, but also to the maximum length approachable with non-zero likelihood of getting a good result. In this regard, it is important to highlight that hybrid approaches are also taken into consideration. Thus, this benchmark constitutes the first effort to provide users a general-purpose dataset. Also in this paper, we introduce a first full solving of QOPTLib using two solvers based on quantum annealing. Our main intention with this is to establish a preliminary baseline, hoping to inspire other researchers to beat these outcomes with newly proposed quantum-based algorithms.

View on arXiv
Comments on this paper