ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15704
21
0

Efficient Multi-Model Fusion with Adversarial Complementary Representation Learning

24 April 2024
Zuheng Kang
Yayun He
Jianzong Wang
Junqing Peng
Jing Xiao
ArXivPDFHTML
Abstract

Single-model systems often suffer from deficiencies in tasks such as speaker verification (SV) and image classification, relying heavily on partial prior knowledge during decision-making, resulting in suboptimal performance. Although multi-model fusion (MMF) can mitigate some of these issues, redundancy in learned representations may limits improvements. To this end, we propose an adversarial complementary representation learning (ACoRL) framework that enables newly trained models to avoid previously acquired knowledge, allowing each individual component model to learn maximally distinct, complementary representations. We make three detailed explanations of why this works and experimental results demonstrate that our method more efficiently improves performance compared to traditional MMF. Furthermore, attribution analysis validates the model trained under ACoRL acquires more complementary knowledge, highlighting the efficacy of our approach in enhancing efficiency and robustness across tasks.

View on arXiv
Comments on this paper