19
0

Plug-and-Play Algorithm Convergence Analysis From The Standpoint of Stochastic Differential Equation

Abstract

The Plug-and-Play (PnP) algorithm is popular for inverse image problem-solving. However, this algorithm lacks theoretical analysis of its convergence with more advanced plug-in denoisers. We demonstrate that discrete PnP iteration can be described by a continuous stochastic differential equation (SDE). We can also achieve this transformation through Markov process formulation of PnP. Then, we can take a higher standpoint of PnP algorithms from stochastic differential equations, and give a unified framework for the convergence property of PnP according to the solvability condition of its corresponding SDE. We reveal that a much weaker condition, bounded denoiser with Lipschitz continuous measurement function would be enough for its convergence guarantee, instead of previous Lipschitz continuous denoiser condition.

View on arXiv
Comments on this paper