ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13286
27
0

Track Role Prediction of Single-Instrumental Sequences

20 April 2024
Changheon Han
Suhyun Lee
Minsam Ko
ArXivPDFHTML
Abstract

In the composition process, selecting appropriate single-instrumental music sequences and assigning their track-role is an indispensable task. However, manually determining the track-role for a myriad of music samples can be time-consuming and labor-intensive. This study introduces a deep learning model designed to automatically predict the track-role of single-instrumental music sequences. Our evaluations show a prediction accuracy of 87% in the symbolic domain and 84% in the audio domain. The proposed track-role prediction methods hold promise for future applications in AI music generation and analysis.

View on arXiv
Comments on this paper