ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13244
28
7

Intelligent Agents for Auction-based Federated Learning: A Survey

20 April 2024
Xiaoli Tang
Han Yu
Xiaoxiao Li
Sarit Kraus
    FedML
ArXivPDFHTML
Abstract

Auction-based federated learning (AFL) is an important emerging category of FL incentive mechanism design, due to its ability to fairly and efficiently motivate high-quality data owners to join data consumers' (i.e., servers') FL training tasks. To enhance the efficiency in AFL decision support for stakeholders (i.e., data consumers, data owners, and the auctioneer), intelligent agent-based techniques have emerged. However, due to the highly interdisciplinary nature of this field and the lack of a comprehensive survey providing an accessible perspective, it is a challenge for researchers to enter and contribute to this field. This paper bridges this important gap by providing a first-of-its-kind survey on the Intelligent Agents for AFL (IA-AFL) literature. We propose a unique multi-tiered taxonomy that organises existing IA-AFL works according to 1) the stakeholders served, 2) the auction mechanism adopted, and 3) the goals of the agents, to provide readers with a multi-perspective view into this field. In addition, we analyse the limitations of existing approaches, summarise the commonly adopted performance evaluation metrics, and discuss promising future directions leading towards effective and efficient stakeholder-oriented decision support in IA-AFL ecosystems.

View on arXiv
Comments on this paper