ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.11778
40
16

CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration

17 April 2024
Rui Deng
Tianpei Gu
    Mamba
ArXivPDFHTML
Abstract

Reconstructing degraded images is a critical task in image processing. Although CNN and Transformer-based models are prevalent in this field, they exhibit inherent limitations, such as inadequate long-range dependency modeling and high computational costs. To overcome these issues, we introduce the Channel-Aware U-Shaped Mamba (CU-Mamba) model, which incorporates a dual State Space Model (SSM) framework into the U-Net architecture. CU-Mamba employs a Spatial SSM module for global context encoding and a Channel SSM component to preserve channel correlation features, both in linear computational complexity relative to the feature map size. Extensive experimental results validate CU-Mamba's superiority over existing state-of-the-art methods, underscoring the importance of integrating both spatial and channel contexts in image restoration.

View on arXiv
Comments on this paper