33
1

Implementation and Evaluation of a Gradient Descent-Trained Defensible Blackboard Architecture System

Abstract

A variety of forms of artificial intelligence systems have been developed. Two well-known techniques are neural networks and rule-fact expert systems. The former can be trained from presented data while the latter is typically developed by human domain experts. A combined implementation that uses gradient descent to train a rule-fact expert system has been previously proposed. A related system type, the Blackboard Architecture, adds an actualization capability to expert systems. This paper proposes and evaluates the incorporation of a defensible-style gradient descent training capability into the Blackboard Architecture. It also introduces the use of activation functions for defensible artificial intelligence systems and implements and evaluates a new best path-based training algorithm.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.