51
2

LADDER: An Efficient Framework for Video Frame Interpolation

Abstract

Video Frame Interpolation (VFI) is a crucial technique in various applications such as slow-motion generation, frame rate conversion, video frame restoration etc. This paper introduces an efficient video frame interpolation framework that aims to strike a favorable balance between efficiency and quality. Our framework follows a general paradigm consisting of a flow estimator and a refinement module, while incorporating carefully designed components. First of all, we adopt depth-wise convolution with large kernels in the flow estimator that simultaneously reduces the parameters and enhances the receptive field for encoding rich context and handling complex motion. Secondly, diverging from a common design for the refinement module with a UNet-structure (encoder-decoder structure), which we find redundant, our decoder-only refinement module directly enhances the result from coarse to fine features, offering a more efficient process. In addition, to address the challenge of handling high-definition frames, we also introduce an innovative HD-aware augmentation strategy during training, leading to consistent enhancement on HD images. Extensive experiments are conducted on diverse datasets, Vimeo90K, UCF101, Xiph and SNU-FILM. The results demonstrate that our approach achieves state-of-the-art performance with clear improvement while requiring much less FLOPs and parameters, reaching to a better spot for balancing efficiency and quality.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.