ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09599
24
6

Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation

15 April 2024
Shangqing Liu
Wei Ma
Jian-Xun Wang
Xiaofei Xie
Rui-Lin Feng
Yang Liu
    AAML
ArXivPDFHTML
Abstract

Source code vulnerability detection aims to identify inherent vulnerabilities to safeguard software systems from potential attacks. Many prior studies overlook diverse vulnerability characteristics, simplifying the problem into a binary (0-1) classification task for example determining whether it is vulnerable or not. This poses a challenge for a single deep learning-based model to effectively learn the wide array of vulnerability characteristics. Furthermore, due to the challenges associated with collecting large-scale vulnerability data, these detectors often overfit limited training datasets, resulting in lower model generalization performance. To address the aforementioned challenges, in this work, we introduce a fine-grained vulnerability detector namely FGVulDet. Unlike previous approaches, FGVulDet employs multiple classifiers to discern characteristics of various vulnerability types and combines their outputs to identify the specific type of vulnerability. Each classifier is designed to learn type-specific vulnerability semantics. Additionally, to address the scarcity of data for some vulnerability types and enhance data diversity for learning better vulnerability semantics, we propose a novel vulnerability-preserving data augmentation technique to augment the number of vulnerabilities. Taking inspiration from recent advancements in graph neural networks for learning program semantics, we incorporate a Gated Graph Neural Network (GGNN) and extend it to an edge-aware GGNN to capture edge-type information. FGVulDet is trained on a large-scale dataset from GitHub, encompassing five different types of vulnerabilities. Extensive experiments compared with static-analysis-based approaches and learning-based approaches have demonstrated the effectiveness of FGVulDet.

View on arXiv
Comments on this paper