ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.08944
17
1

Physics-Aware Iterative Learning and Prediction of Saliency Map for Bimanual Grasp Planning

13 April 2024
Shi-yao Wang
Xiuping Liu
Charlie C. L. Wang
Jian Liu
ArXivPDFHTML
Abstract

Learning the skill of human bimanual grasping can extend the capabilities of robotic systems when grasping large or heavy objects. However, it requires a much larger search space for grasp points than single-hand grasping and numerous bimanual grasping annotations for network learning, making both data-driven or analytical grasping methods inefficient and insufficient. We propose a framework for bimanual grasp saliency learning that aims to predict the contact points for bimanual grasping based on existing human single-handed grasping data. We learn saliency corresponding vectors through minimal bimanual contact annotations that establishes correspondences between grasp positions of both hands, capable of eliminating the need for training a large-scale bimanual grasp dataset. The existing single-handed grasp saliency value serves as the initial value for bimanual grasp saliency, and we learn a saliency adjusted score that adds the initial value to obtain the final bimanual grasp saliency value, capable of predicting preferred bimanual grasp positions from single-handed grasp saliency. We also introduce a physics-balance loss function and a physics-aware refinement module that enables physical grasp balance, capable of enhancing the generalization of unknown objects. Comprehensive experiments in simulation and comparisons on dexterous grippers have demonstrated that our method can achieve balanced bimanual grasping effectively.

View on arXiv
Comments on this paper