ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.08293
32
0

Overcoming Scene Context Constraints for Object Detection in wild using Defilters

12 April 2024
Vamshi Krishna Kancharla
Neelam Sinha
ArXivPDFHTML
Abstract

This paper focuses on improving object detection performance by addressing the issue of image distortions, commonly encountered in uncontrolled acquisition environments. High-level computer vision tasks such as object detection, recognition, and segmentation are particularly sensitive to image distortion. To address this issue, we propose a novel approach employing an image defilter to rectify image distortion prior to object detection. This method enhances object detection accuracy, as models perform optimally when trained on non-distorted images. Our experiments demonstrate that utilizing defiltered images significantly improves mean average precision compared to training object detection models on distorted images. Consequently, our proposed method offers considerable benefits for real-world applications plagued by image distortion. To our knowledge, the contribution lies in employing distortion-removal paradigm for object detection on images captured in natural settings. We achieved an improvement of 0.562 and 0.564 of mean Average precision on validation and test data.

View on arXiv
Comments on this paper