ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.06834
19
0

Solving Parametric PDEs with Radial Basis Functions and Deep Neural Networks

10 April 2024
Guanhang Lei
Zhen Lei
Lei Shi
Chenyu Zeng
ArXivPDFHTML
Abstract

We propose the POD-DNN, a novel algorithm leveraging deep neural networks (DNNs) along with radial basis functions (RBFs) in the context of the proper orthogonal decomposition (POD) reduced basis method (RBM), aimed at approximating the parametric mapping of parametric partial differential equations on irregular domains. The POD-DNN algorithm capitalizes on the low-dimensional characteristics of the solution manifold for parametric equations, alongside the inherent offline-online computational strategy of RBM and DNNs. In numerical experiments, POD-DNN demonstrates significantly accelerated computation speeds during the online phase. Compared to other algorithms that utilize RBF without integrating DNNs, POD-DNN substantially improves the computational speed in the online inference process. Furthermore, under reasonable assumptions, we have rigorously derived upper bounds on the complexity of approximating parametric mappings with POD-DNN, thereby providing a theoretical analysis of the algorithm's empirical performance.

View on arXiv
Comments on this paper