ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05832
26
1

Human-Machine Interaction in Automated Vehicles: Reducing Voluntary Driver Intervention

8 April 2024
Xinzhi Zhong
Yang Zhou
Varshini Kamaraj
Zhenhao Zhou
Wissam Kontar
Dan Negrut
John D. Lee
Soyoung Ahn
ArXiv (abs)PDFHTML
Abstract

This paper develops a novel car-following control method to reduce voluntary driver interventions and improve traffic stability in Automated Vehicles (AVs). Through a combination of experimental and empirical analysis, we show how voluntary driver interventions can instigate substantial traffic disturbances that are amplified along the traffic upstream. Motivated by these findings, we present a framework for driver intervention based on evidence accumulation (EA), which describes the evolution of the driver's distrust in automation, ultimately resulting in intervention. Informed through the EA framework, we propose a deep reinforcement learning (DRL)-based car-following control for AVs that is strategically designed to mitigate unnecessary driver intervention and improve traffic stability. Numerical experiments are conducted to demonstrate the effectiveness of the proposed control model.

View on arXiv
Comments on this paper