ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05268
34
11

MC2^22: Multi-concept Guidance for Customized Multi-concept Generation

8 April 2024
Jiaxiu Jiang
Yabo Zhang
Kailai Feng
Xiaohe Wu
Wangmeng Zuo
    DiffM
ArXivPDFHTML
Abstract

Customized text-to-image generation aims to synthesize instantiations of user-specified concepts and has achieved unprecedented progress in handling individual concept. However, when extending to multiple customized concepts, existing methods exhibit limitations in terms of flexibility and fidelity, only accommodating the combination of limited types of models and potentially resulting in a mix of characteristics from different concepts. In this paper, we introduce the Multi-concept guidance for Multi-concept customization, termed MC2^22, for improved flexibility and fidelity. MC2^22 decouples the requirements for model architecture via inference time optimization, allowing the integration of various heterogeneous single-concept customized models. It adaptively refines the attention weights between visual and textual tokens, directing image regions to focus on their associated words while diminishing the impact of irrelevant ones. Extensive experiments demonstrate that MC2^22 even surpasses previous methods that require additional training in terms of consistency with input prompt and reference images. Moreover, MC2^22 can be extended to elevate the compositional capabilities of text-to-image generation, yielding appealing results. Code will be publicly available at https://github.com/JIANGJiaXiu/MC-2.

View on arXiv
Comments on this paper