ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05181
21
0

Adaptive Learning for Multi-view Stereo Reconstruction

8 April 2024
Qinglu Min
Jie Zhao
Zhihao Zhang
Chen Min
    3DV
ArXivPDFHTML
Abstract

Deep learning has recently demonstrated its excellent performance on the task of multi-view stereo (MVS). However, loss functions applied for deep MVS are rarely studied. In this paper, we first analyze existing loss functions' properties for deep depth based MVS approaches. Regression based loss leads to inaccurate continuous results by computing mathematical expectation, while classification based loss outputs discretized depth values. To this end, we then propose a novel loss function, named adaptive Wasserstein loss, which is able to narrow down the difference between the true and predicted probability distributions of depth. Besides, a simple but effective offset module is introduced to better achieve sub-pixel prediction accuracy. Extensive experiments on different benchmarks, including DTU, Tanks and Temples and BlendedMVS, show that the proposed method with the adaptive Wasserstein loss and the offset module achieves state-of-the-art performance.

View on arXiv
Comments on this paper