ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05052
55
15

Facial Affective Behavior Analysis with Instruction Tuning

7 April 2024
Yifan Li
Anh Dao
Wentao Bao
Zhen Tan
Tianlong Chen
Huan Liu
Yu Kong
    CVBM
ArXivPDFHTML
Abstract

Facial affective behavior analysis (FABA) is crucial for understanding human mental states from images. However, traditional approaches primarily deploy models to discriminate among discrete emotion categories, and lack the fine granularity and reasoning capability for complex facial behaviors. The advent of Multi-modal Large Language Models (MLLMs) has been proven successful in general visual understanding tasks. However, directly harnessing MLLMs for FABA is challenging due to the scarcity of datasets and benchmarks, neglecting facial prior knowledge, and low training efficiency. To address these challenges, we introduce (i) an instruction-following dataset for two FABA tasks, e.g., emotion and action unit recognition, (ii) a benchmark FABA-Bench with a new metric considering both recognition and generation ability, and (iii) a new MLLM "EmoLA" as a strong baseline to the community. Our initiative on the dataset and benchmarks reveal the nature and rationale of facial affective behaviors, i.e., fine-grained facial movement, interpretability, and reasoning. Moreover, to build an effective and efficient FABA MLLM, we introduce a facial prior expert module with face structure knowledge and a low-rank adaptation module into pre-trained MLLM. We conduct extensive experiments on FABA-Bench and four commonly-used FABA datasets. The results demonstrate that the proposed facial prior expert can boost the performance and EmoLA achieves the best results on our FABA-Bench. On commonly-used FABA datasets, EmoLA is competitive rivaling task-specific state-of-the-art models.

View on arXiv
Comments on this paper