ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05001
24
1

Dual-Scale Transformer for Large-Scale Single-Pixel Imaging

7 April 2024
Gang Qu
Ping Wang
Xin Yuan
    MedIm
ArXivPDFHTML
Abstract

Single-pixel imaging (SPI) is a potential computational imaging technique which produces image by solving an illposed reconstruction problem from few measurements captured by a single-pixel detector. Deep learning has achieved impressive success on SPI reconstruction. However, previous poor reconstruction performance and impractical imaging model limit its real-world applications. In this paper, we propose a deep unfolding network with hybrid-attention Transformer on Kronecker SPI model, dubbed HATNet, to improve the imaging quality of real SPI cameras. Specifically, we unfold the computation graph of the iterative shrinkagethresholding algorithm (ISTA) into two alternative modules: efficient tensor gradient descent and hybrid-attention multiscale denoising. By virtue of Kronecker SPI, the gradient descent module can avoid high computational overheads rooted in previous gradient descent modules based on vectorized SPI. The denoising module is an encoder-decoder architecture powered by dual-scale spatial attention for high- and low-frequency aggregation and channel attention for global information recalibration. Moreover, we build a SPI prototype to verify the effectiveness of the proposed method. Extensive experiments on synthetic and real data demonstrate that our method achieves the state-of-the-art performance. The source code and pre-trained models are available at https://github.com/Gang-Qu/HATNet-SPI.

View on arXiv
Comments on this paper