ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.04511
21
2

Cluster-based Video Summarization with Temporal Context Awareness

6 April 2024
Hai-Dang Huynh-Lam
Ngoc-Phuong Ho-Thi
Minh-Triet Tran
Trung-Truc Huynh-Le
ArXivPDFHTML
Abstract

In this paper, we present TAC-SUM, a novel and efficient training-free approach for video summarization that addresses the limitations of existing cluster-based models by incorporating temporal context. Our method partitions the input video into temporally consecutive segments with clustering information, enabling the injection of temporal awareness into the clustering process, setting it apart from prior cluster-based summarization methods. The resulting temporal-aware clusters are then utilized to compute the final summary, using simple rules for keyframe selection and frame importance scoring. Experimental results on the SumMe dataset demonstrate the effectiveness of our proposed approach, outperforming existing unsupervised methods and achieving comparable performance to state-of-the-art supervised summarization techniques. Our source code is available for reference at \url{https://github.com/hcmus-thesis-gulu/TAC-SUM}.

View on arXiv
Comments on this paper