ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.03250
29
0

Multi-task learning via robust regularized clustering with non-convex group penalties

4 April 2024
Akira Okazaki
Shuichi Kawano
    OOD
ArXivPDFHTML
Abstract

Multi-task learning (MTL) aims to improve estimation and prediction performance by sharing common information among related tasks. One natural assumption in MTL is that tasks are classified into clusters based on their characteristics. However, existing MTL methods based on this assumption often ignore outlier tasks that have large task-specific components or no relation to other tasks. To address this issue, we propose a novel MTL method called Multi-Task Learning via Robust Regularized Clustering (MTLRRC). MTLRRC incorporates robust regularization terms inspired by robust convex clustering, which is further extended to handle non-convex and group-sparse penalties. The extension allows MTLRRC to simultaneously perform robust task clustering and outlier task detection. The connection between the extended robust clustering and the multivariate M-estimator is also established. This provides an interpretation of the robustness of MTLRRC against outlier tasks. An efficient algorithm based on a modified alternating direction method of multipliers is developed for the estimation of the parameters. The effectiveness of MTLRRC is demonstrated through simulation studies and application to real data.

View on arXiv
Comments on this paper