65
6

Transformers as Transducers

Abstract

We study the sequence-to-sequence mapping capacity of transformers by relating them to finite transducers, and find that they can express surprisingly large classes of transductions. We do so using variants of RASP, a programming language designed to help people "think like transformers," as an intermediate representation. We extend the existing Boolean variant B-RASP to sequence-to-sequence functions and show that it computes exactly the first-order rational functions (such as string rotation). Then, we introduce two new extensions. B-RASP[pos] enables calculations on positions (such as copying the first half of a string) and contains all first-order regular functions. S-RASP adds prefix sum, which enables additional arithmetic operations (such as squaring a string) and contains all first-order polyregular functions. Finally, we show that masked average-hard attention transformers can simulate S-RASP. A corollary of our results is a new proof that transformer decoders are Turing-complete.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.