ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00688
39
2

Meta Learning in Bandits within Shared Affine Subspaces

31 March 2024
Steven Bilaj
Sofien Dhouib
S. Maghsudi
ArXivPDFHTML
Abstract

We study the problem of meta-learning several contextual stochastic bandits tasks by leveraging their concentration around a low-dimensional affine subspace, which we learn via online principal component analysis to reduce the expected regret over the encountered bandits. We propose and theoretically analyze two strategies that solve the problem: One based on the principle of optimism in the face of uncertainty and the other via Thompson sampling. Our framework is generic and includes previously proposed approaches as special cases. Besides, the empirical results show that our methods significantly reduce the regret on several bandit tasks.

View on arXiv
Comments on this paper