ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00686
27
0

Utilizing Maximum Mean Discrepancy Barycenter for Propagating the Uncertainty of Value Functions in Reinforcement Learning

31 March 2024
Srinjoy Roy
Swagatam Das
ArXivPDFHTML
Abstract

Accounting for the uncertainty of value functions boosts exploration in Reinforcement Learning (RL). Our work introduces Maximum Mean Discrepancy Q-Learning (MMD-QL) to improve Wasserstein Q-Learning (WQL) for uncertainty propagation during Temporal Difference (TD) updates. MMD-QL uses the MMD barycenter for this purpose, as MMD provides a tighter estimate of closeness between probability measures than the Wasserstein distance. Firstly, we establish that MMD-QL is Probably Approximately Correct in MDP (PAC-MDP) under the average loss metric. Concerning the accumulated rewards, experiments on tabular environments show that MMD-QL outperforms WQL and other algorithms. Secondly, we incorporate deep networks into MMD-QL to create MMD Q-Network (MMD-QN). Making reasonable assumptions, we analyze the convergence rates of MMD-QN using function approximation. Empirical results on challenging Atari games demonstrate that MMD-QN performs well compared to benchmark deep RL algorithms, highlighting its effectiveness in handling large state-action spaces.

View on arXiv
Comments on this paper