ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00672
42
3

A General and Efficient Training for Transformer via Token Expansion

31 March 2024
Wenxuan Huang
Yunhang Shen
Jiao Xie
Baochang Zhang
Gaoqi He
Ke Li
Xing Sun
Shaohui Lin
ArXivPDFHTML
Abstract

The remarkable performance of Vision Transformers (ViTs) typically requires an extremely large training cost. Existing methods have attempted to accelerate the training of ViTs, yet typically disregard method universality with accuracy dropping. Meanwhile, they break the training consistency of the original transformers, including the consistency of hyper-parameters, architecture, and strategy, which prevents them from being widely applied to different Transformer networks. In this paper, we propose a novel token growth scheme Token Expansion (termed ToE) to achieve consistent training acceleration for ViTs. We introduce an "initialization-expansion-merging" pipeline to maintain the integrity of the intermediate feature distribution of original transformers, preventing the loss of crucial learnable information in the training process. ToE can not only be seamlessly integrated into the training and fine-tuning process of transformers (e.g., DeiT and LV-ViT), but also effective for efficient training frameworks (e.g., EfficientTrain), without twisting the original training hyper-parameters, architecture, and introducing additional training strategies. Extensive experiments demonstrate that ToE achieves about 1.3x faster for the training of ViTs in a lossless manner, or even with performance gains over the full-token training baselines. Code is available at https://github.com/Osilly/TokenExpansion .

View on arXiv
Comments on this paper