ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00558
28
0

GAN with Skip Patch Discriminator for Biological Electron Microscopy Image Generation

31 March 2024
Nishith Ranjon Roy
Nailah Rawnaq
T. Kaman
    DiffMGAN
ArXiv (abs)PDFHTML
Abstract

Generating realistic electron microscopy (EM) images has been a challenging problem due to their complex global and local structures. Isola et al. proposed pix2pix, a conditional Generative Adversarial Network (GAN), for the general purpose of image-to-image translation; which fails to generate realistic EM images. We propose a new architecture for the discriminator in the GAN providing access to multiple patch sizes using skip patches and generating realistic EM images.

View on arXiv
Comments on this paper