25
0

Kernel entropy estimation for linear processes II

Abstract

Let X={Xn:nN}X=\{X_n: n\in \mathbb{N}\} be a linear process with bounded probability density function f(x)f(x). Under certain conditions, we use the kernel estimator \[ \frac{2}{n(n-1)h_n} \sum_{1\le i<j\le n}K\Big(\frac{X_i-X_j}{h_n}\Big) \] to estimate the quadratic functional of Rf2(x)dx\int_{\mathbb{R}}f^2(x)dx of the linear process X={Xn:nN}X=\{X_n: n\in \mathbb{N}\} and improve the corresponding results in [4].

View on arXiv
Comments on this paper