ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.19306
47
1

Sparse Generation: Making Pseudo Labels Sparse for Point Weakly Supervised Object Detection on Low Data Volume

31 December 2024
Tian Ma
Chuyang Shang
Wanzhu Ren
Yuancheng Li
Jiiayi Yang
ArXivPDFHTML
Abstract

Existing pseudo label generation methods for point weakly supervised object detection are inadequate in low data volume and dense object detection tasks. We consider the generation of weakly supervised pseudo labels as the model's sparse output, and propose Sparse Generation as a solution to make pseudo labels sparse. The method employs three processing stages (Mapping, Mask, Regression), constructs dense tensors through the relationship between data and detector model, optimizes three of its parameters, and obtains a sparse tensor, thereby indirectly obtaining higher quality pseudo labels, and addresses the model's density problem on low data volume. Additionally, we propose perspective-based matching, which provides more rational pseudo boxes for prediction missed on instances. In comparison to the SOTA method, on four datasets (MS COCO-val, RSOD, SIMD, Bullet-Hole), the experimental results demonstrated a significant advantage.

View on arXiv
Comments on this paper