ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.17562
21
0

Deep functional multiple index models with an application to SER

26 March 2024
Matthieu Saumard
Abir El Haj
Thibault Napoleon
ArXivPDFHTML
Abstract

Speech Emotion Recognition (SER) plays a crucial role in advancing human-computer interaction and speech processing capabilities. We introduce a novel deep-learning architecture designed specifically for the functional data model known as the multiple-index functional model. Our key innovation lies in integrating adaptive basis layers and an automated data transformation search within the deep learning framework. Simulations for this new model show good performances. This allows us to extract features tailored for chunk-level SER, based on Mel Frequency Cepstral Coefficients (MFCCs). We demonstrate the effectiveness of our approach on the benchmark IEMOCAP database, achieving good performance compared to existing methods.

View on arXiv
Comments on this paper