ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16804
19
4

TEI2GO: A Multilingual Approach for Fast Temporal Expression Identification

25 March 2024
Hugo Sousa
Ricardo Campos
A. Jorge
ArXivPDFHTML
Abstract

Temporal expression identification is crucial for understanding texts written in natural language. Although highly effective systems such as HeidelTime exist, their limited runtime performance hampers adoption in large-scale applications and production environments. In this paper, we introduce the TEI2GO models, matching HeidelTime's effectiveness but with significantly improved runtime, supporting six languages, and achieving state-of-the-art results in four of them. To train the TEI2GO models, we used a combination of manually annotated reference corpus and developed ``Professor HeidelTime'', a comprehensive weakly labeled corpus of news texts annotated with HeidelTime. This corpus comprises a total of 138,069138,069138,069 documents (over six languages) with 1,050,9211,050,9211,050,921 temporal expressions, the largest open-source annotated dataset for temporal expression identification to date. By describing how the models were produced, we aim to encourage the research community to further explore, refine, and extend the set of models to additional languages and domains. Code, annotations, and models are openly available for community exploration and use. The models are conveniently on HuggingFace for seamless integration and application.

View on arXiv
Comments on this paper