ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16204
37
5

SQL-Encoder: Improving NL2SQL In-Context Learning Through a Context-Aware Encoder

24 March 2024
Mohammadreza Pourreza
Davood Rafiei
Yuxi Feng
Raymond Li
Zhenan Fan
Weiwei Zhang
ArXivPDFHTML
Abstract

Detecting structural similarity between queries is essential for selecting examples in in-context learning models. However, assessing structural similarity based solely on the natural language expressions of queries, without considering SQL queries, presents a significant challenge. This paper explores the significance of this similarity metric and proposes a model for accurately estimating it. To achieve this, we leverage a dataset comprising 170k question pairs, meticulously curated to train a similarity prediction model. Our comprehensive evaluation demonstrates that the proposed model adeptly captures the structural similarity between questions, as evidenced by improvements in Kendall-Tau distance and precision@k metrics. Notably, our model outperforms strong competitive embedding models from OpenAI and Cohere. Furthermore, compared to these competitive models, our proposed encoder enhances the downstream performance of NL2SQL models in 1-shot in-context learning scenarios by 1-2\% for GPT-3.5-turbo, 4-8\% for CodeLlama-7B, and 2-3\% for CodeLlama-13B.

View on arXiv
Comments on this paper