ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14666
16
4

SyllabusQA: A Course Logistics Question Answering Dataset

3 March 2024
Nigel Fernandez
Alexander Scarlatos
Andrew S. Lan
ArXivPDFHTML
Abstract

Automated teaching assistants and chatbots have significant potential to reduce the workload of human instructors, especially for logistics-related question answering, which is important to students yet repetitive for instructors. However, due to privacy concerns, there is a lack of publicly available datasets. We introduce SyllabusQA, an open-source dataset with 63 real course syllabi covering 36 majors, containing 5,078 open-ended course logistics-related question-answer pairs that are diverse in both question types and answer formats. Since many logistics-related questions contain critical information like the date of an exam, it is important to evaluate the factuality of answers. We benchmark several strong baselines on this task, from large language model prompting to retrieval-augmented generation. We find that despite performing close to humans on traditional metrics of textual similarity, there remains a significant gap between automated approaches and humans in terms of fact precision.

View on arXiv
Comments on this paper