ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14583
34
0

Co-Optimization of Environment and Policies for Decentralized Multi-Agent Navigation

21 March 2024
Zhan Gao
Guang Yang
Amanda Prorok
ArXivPDFHTML
Abstract

This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in cluttered environments. By introducing two sub-objectives of multi-agent navigation and environment optimization, we propose an agent-environment co-optimization\textit{agent-environment co-optimization}agent-environment co-optimization problem and develop a coordinated algorithm\textit{coordinated algorithm}coordinated algorithm that alternates between these sub-objectives to search for an optimal synthesis of agent actions and obstacle configurations in the environment; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between agents, environment and performance, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum trajectory of an associated time-varying non-convex optimization problem. Extensive numerical results corroborate theoretical findings and show the benefits of co-optimization over baselines. Interestingly, the results also indicate that optimized environment configurations are able to offer structural guidance that is key to de-conflicting agents in motion.

View on arXiv
Comments on this paper