ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14582
28
1

Large Language Models for Multi-Choice Question Classification of Medical Subjects

21 March 2024
Víctor Ponce-López
    LM&MA
ArXivPDFHTML
Abstract

The aim of this paper is to evaluate whether large language models trained on multi-choice question data can be used to discriminate between medical subjects. This is an important and challenging task for automatic question answering. To achieve this goal, we train deep neural networks for multi-class classification of questions into the inferred medical subjects. Using our Multi-Question (MQ) Sequence-BERT method, we outperform the state-of-the-art results on the MedMCQA dataset with an accuracy of 0.68 and 0.60 on their development and test sets, respectively. In this sense, we show the capability of AI and LLMs in particular for multi-classification tasks in the Healthcare domain.

View on arXiv
Comments on this paper