ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14447
33
4

Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset

21 March 2024
Andrea Avogaro
Andrea Toaiari
Federico Cunico
Xiangmin Xu
Haralambos Dafas
Alessandro Vinciarelli
Emma Li
Marco Cristani
ArXivPDFHTML
Abstract

We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot, the quadruped robot manufactured by Boston Dynamics. The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors. These make 3D body pose analysis challenging because being close to the ground captures humans only partially. The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users. The Corpus contains not only the recordings of the built-in stereo cameras of Spot, but also those of a 6-camera OptiTrack system (all recordings are synchronized). This leads to ground-truth skeletal representations with a precision lower than a millimeter. In addition, the Corpus includes reproducible benchmarks on 3D Human Pose Estimation, Human Pose Forecasting, and Collision Prediction, all based on publicly available baseline approaches. This enables future HARPER users to rigorously compare their results with those we provide in this work.

View on arXiv
Comments on this paper