ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13215
39
0
v1v2 (latest)

What makes a small-world network? Leveraging machine learning for the robust prediction and classification of networks

20 March 2024
R. Appaw
N. Fountain‐Jones
M. A. Charleston
ArXiv (abs)PDFHTML
Abstract

The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often simulation approaches involve selecting a suitable network generative model such as Erd\"os-R\'enyi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures, and forming real-world networks

View on arXiv
Comments on this paper